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13 ABSTRACT

Dual variaticnal principles for steady state wave propagation in three dimen-

sional thermoviscoelastic media are presented. The first one, for the equations of
motion, involves only the complex displacement function., The second principle is
for the energy equation. The specialized versions of these principles in two-
dimensignal polar coordinates and then in one dimension are obtained, A one-dimen-
sional example, that of wave propagation in a thermoviscoelastic rod insulated on
its lateral surface and driven by a sinusoidal stress at one end, is solved using
the Rayleigh-Ritz method. The displacement and temperature functions are expressed
as series of polynomials., Successive approximations for the solution are compared
with a solution obtained by a method of finite differences, and an estimate of the
: degree of accuracy as a function of the number of terms taken in the series is ob-
5 ' tajined, It is found that as long as the spatial distribution of stress and tempera-
5 ture are suyffictently smooth, r .. _.onvergence to the correct solution is obtained,
If the stress is a rapidly oscil. .iing function of the distance along the rod, poly-
nomials are no longer efficient and other test functions must be chosen.
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INTRODUCTION

Several authors have developed and used variational principles to
obtain solutions to problems in quasi-static and dynamic viscoelasticity,
with and without thermomechanical coupling. Gurtin [1]*and Leitman [2]
have developed variational principles for viscoelastic media without ther-
momechanical coupling. They have used the convolution form of the consti-
tutive equations and have developed variational principles for several
types of boundary value problems. Their work appears to be primarily of
mathematical interest. Valanis [3] has developed a prineciple appiicable
to viscoelastic materials with constant Poisson's ratio, without thermo-

mechanical coupling.

Schapery [6,7] has studied wave propagation in viscoelastic media

with thermomechanical coupling. In [7] he has used a complex modulus form

of the constitutive equations and has developed a variational principle
analogeus to Reissner's complementary principle using complex kinetic and
potential "energy" functions. His principle, however, involves both stress
and displacement functions which must already satisfy the equations of mo-
tion. He has considered examples with bodies that are either massless or
with concentrated mass, and in his last example of a 'solid cylinder with
distributed mass' he only gives a first approximation to the solution,

using only one term of a series expansion. While his method appears promis-

ing, the question of convergence to the exact solution, or, in other words,
how many terms in the series are neceséary to get a sufficiently close

approximation te the exact solution, remains open.

%
Numbers in square brackets designate references at the end of this
report.
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ﬁ’ . This report is concerned with the application of variational prin-

i% ciples to problems of steady state wave propagation in viscoelastic media
‘ff with thermomechanical coupling. A complex modulus description of the

B

éf constitutive equations is used, The material is assumed to be thermorheo-

ot

N‘"‘i‘% st

g 3 lozically simple [S5] and the energy equation, as suggested by Schapery
3 3

? {é% |71, uses the cycle averaged temperature distribution with the cycle

< iy

% ,if averaged value of the Rayleigh dissipation function acting as the heat
: e

% ,Zﬁ source. The displacement variational principle suggested here involves
% <;? only the complex displacement function and an admissible set of dis-

placement functions need only satisfy any prescribed displacement boundary

s

& coaditions Lhac migi-t exist. This principle can be considered to be an
21
kB .
3 N extension of that developed by Kohn, Krumhansl and Lee [4] for elastic
. &2 media. Tt uses complex instead of real "energy" functions. The tem-
E perature variational principle is the one suggested by Biot [8] and
o

R Schapery 171,

s 74

§ é; An alternative form of these principles is suggested., This proves
3 ;?% more useful for certain applications. These principles are set up for
.

2

E . .

i & general three-dimensional problems and are later specialized to the

X cases of two and one dimension.

3

® = As an cxample, the problem of steady state lonzitudinal waves in a
x fm X

. =S

& & viscovlastic rod with thermal coupling subjected to a sinusoidal stress
S *!“ . s : . .

B 3 applicd at one end, is solved using a variational approach. Huang and
3 e Lee 19) solved this problem including time as an independent variable.
".": )

ﬁg This resvlted in partial diffoerential cquations which were solved
1) 34‘
gg numerically using a method of finite djfferences. This is useful if

3 a8 the time histories of the stress and temperature have to be determined.
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For most engineering design applications, however, the steady state
values of stress and temperature are of primary interest, since due to
dissipation of mechanical energy the temperature increases until a steady
state is reached, if in fact the situation is stable. Such a steady
state yields the most severe temperature conditions which are the major
concern in design. 1In such cases it is simpler and far more efficient

to obtain the steady state values directly instead of following tl.e com-
plete time history of the process till a steady state is reached. In
this example, the steady state values of stress and temperature have

been directly obtained by using a Rayleigh-Ritz procedure on the alter-
native form of the variational principles. Functions for displacement
(complex) and temperature are assumed as polynomial series (for con-
venience) with "n" and "m" terms respectively, with unknown coefficients.
Simultaneous extremization of two functionals is carried out by solving
the resultant nonlinear algebraic equations in a computer. The number

of terms "n" and "m" can be set in the program. Calculations for a
Lockheed solid propellant [9] are carried out for various values for

"n" and "m" and the question of rapidity of convergence to the solution

given ia [9] is discussed.

GOVERNING DIFFERENTIAL EQUATIONS

1. General Equations in Three Dimensions

Let us consider the governing differential equations for stresses,
displacements and temperature in steady state oscillations of linear
isotropic viscoelastic media. The thermomechanical coupling is caused

by the cycle averaged value of the mechanical dissipation function acting
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as the heat source in -J:z energy equation and by the fact that the com-

plex viscoelastic modulii are temperature dependent. As pointed out by
Schapery [6,7] the coupling terms due to the dilatation and potential
enerzy drop out of the energy equation if it is integrated over a cycle.
%z assune steady sta::2 conditions where the mechanical variables
are «.' monic funcitions of time, and the temperature, after a sufficiently
long ‘ime, is iuizpenimt of gime. Strictly speaking, the temperature is
never truly tim: iiJependent but has small cyclic variations about a mean
value as a result of the cyclic variations of the potential energy,
dilatation and dissipation (see [9]). These small fluctuations, however,
will be neglected and henceforth the temperature will mean its cycle
averaged steady state value.

Let the stress and strain tensors and the displacement vector be

defined as the real parts of

=~ iwt

oij = O‘ij

~ iwt

eij eij e (1)

S =u eiwt

i i

whare i = V-1 , w is the frequency (real) and t is time. The
complex quantities oij s eij and u, are used most of the time in

further calculations and will be referred to as simply stress, strain
and displacement respectively. The familiar cartesian tensor notation

is used here. The suffixes i and j range from 1 to 3 and a repeated

index implies summation over that index.

The equations of motion are

. R - ‘
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o, .+p W u, =0 (2)
139.1 i %
where p 1is the mass density (assumed constant). p %
i 7
The constitutive equaticus, 1sing the familiar complex modulus § E
formulation, are i
o .=\ 5 * 3
1550 Yk eyt (g gty ) )

B S ok B

% * I
where X and B are complex Lame parameters which are functions of ]

temperature, and 51 is the Kronicker delta.

k|
2
Equation (3) is entirely analogous to the constitutive equations 3

i 4 ¢

for elastic solids and is obtained directly by the use of the well

S a0 i

known correspondence principle {12].

We note that Egs. (3) should contain a term due to thermal expan-

sion. However, as pointed out by Schapery in [7], in our problem each

U v L i v ST

of the mechanical variables can be separated into two parts: (a) that

ok nrte, e

due to applied cyclic loadiug in the absence of thermal expansion, and

(b) that due to thermal expansion with homogeneous mechanical boundary

conditions and a temperature distribution obtained from the components

USRS S BN

of (a). Here we are only concerned with the former components and the
latter can be obtained from standard thermoelastic analysis.

The Lamé parameters are related to the more commonly used complex

shear and bulk compliiances J* and B* by the relations

*
sk
J
(4)
%
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Typically  in polymers, J 1is a very strong nonlinear function
*
of temperature while B is a relatively weak function of temperature.
*
In thermorheologically simple materials it is assumed that J is i

a function of only the reduced frequency ®' which is related to the E

actual frequency w through the temperature dependent shift factor
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aq (see [7]), i.e.

o' = w ay(T) (5)

e 2 S LA S R S T e s R 3 R

T TR L ST T T
+.

where a, represents the effect of temperature on viscosity.

ATIURNE 5 e g ST A S L ST s ST T st e S T 3 0 SV e S

Combining Eqs. (2) and (3) one can write the equations of motion in

terms of displacement alone

N S s e e Rt B e B AL M M B P 0 W A

*
Y .4+ G u +p wz u

* *
Grugd, t Gy P 31,4 170 ©

..

aoe

The steady state energy equation for the cycle averaged temperature

distribution is given by

KT

11 = -2D (7)

where T 1is the temperature, K is the thermal conductivity (assumed
constant) and D 1is the cycle averaged value of the Rayleigh dissipa-

tion function given by

) t+%? ~ '331
= e K . '
D=z f Re(, ) Re —i at
t

anie.

where Re denotes the real part of the complex argument. 2D 1is the
cycle averaged value of the mechanical dissipation.

Using Eqs. (1), (3) and (7) and after carrying out the necessary
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integration, we have

p = Polegd® + z“zleijlzi )

where

*
A= xl + 1x2 ‘
* " :
A |

Xl and Wy are the storage Lamé parameters and Xz s By the loss

:
E
3
3
=
i
B
=]
=
rl
i
2
5
=4
X
3
k=
4
=
%

parameters,

E

E:

.,

-

- 1
B

lekklz = %xx ©yj

o | I
& Sl o A

3
-— E

. ‘eijlz = %15 1 ;

S and '“" denotes the complex conjugate.

Note that as defined D is a real functiu: of the strain tensor

”
L L A R

'3

and the loss parameters Xz and Wy -

L TN A AR WY

i Since Az and k, are nonlinear functions of temperature, (7) is
a nonlinear partial differential equation for the témperature. Also, ;
the steady state temperature is purely a spatial function independent 4 %
_ of time. %
Using the familiar kinematic relations ? %
€, =,  +u ) (9)
ij 21,3 Jsi :;
we can write Eq. (7) in terms of displacement and temperature ? ;
KT +9!)~ w 124 u, ;u, ,+u, ,u, )|=0 10) :
Kyt 7 ol F Ry st vy Yy, ¢
N Equations (6) and (10) are a complete set of four nonlinear partial
3 e :
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differential equations for the four unknowns ug (i=1,3) and T .

Since these are written in terms of displacements, the compatibility
conditions are automatically satisfied.
For the boundery conditions we assume that the displacement vector

is prescribed on a part of the 3urface A, » while the traction vector

£ is prescribed on the remainder A0 . Also, the temperature is pre- .
A scribed on the portion of the surface AT and the heat flux (per unit
“;} area) is prescribed on the remaining surface AH .
10
) ;3 2. Eguations in Two-Dimensional Polar Coordinates
ok
.
ki It is instructive to look at the form of the general equations for
A k
- the case of plane strain in polar cocrdinates. These equations and :
2 the associated variational principles to be discussed later are useful .
Ll %
« " for problems involving long circular cylinders in plane strain. g
1 The equations of motion now take the well known form :
=: g 3 o é
X c G 0 - :"
9 r, 1l " r® r © 2 i
i v tr 38t Ty teeyu =0 i
i i
3 (11) ;
4 belo; ac 20 3
% 1 8 rf 0 2 i
T Ta + 3t + - + 0w ue =0 f
,"{ :%
! ;
: while the constitutive euqations become 3
* %* 5
= € L
c. A (er + €0) + 2u €. 3
4 ]
oy % * 3
o = Me_ +eg) + 1" g (12) .E
3
* 3
°re =2 Ere a

where or s 09 R Gte are the stress components, cr . ce . ere the

el
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strain components aund u. » Yy the displacement components in polar

(r,8) coordinates.

The strains and displacements are related by the familiar kinematic - %
3 equations
Au :
& =3¢ § :
du u i :
€9 =7 30 + 3 13) 3

€ =-]-'}-aue+.a-u—e-..}-l-§
rb 2\.:3'6" or T

oot sl o GOECAN SR S

The energy equation (Eq. (7)) takes the form

Py

ERT TR TP

RVET=-2 (14)
where
v ¥
g2 a2 13 .1 @ {
B A Rl R L
2 rar 2~2 1
Jr r“ 9o %

This can easily be shown by using the fact that ‘ekk ‘2 and

\e i ‘ z are invariant under the transformation of coordinates and

become

‘ekk‘z - (, + ee)('c'r + 'e'e)

s Y@A&Qﬁ‘ﬁﬂmm&mw;wm‘mkum PR TR

2 - -
leij‘ -> e € + €g fg 2¢ 5 g
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VARIATIONAL PRINCIPLES

1. Variational Principles in Three Dimensions

The field equations (6) and (10) for the coupled thermomechanical
problem together with the boundary conditions are equivalent to two
variational principles.

The variational principle for the equations of motion and the con-
stitutive equations (2) and (3) can be stated as: of all displacement

functions satisfying prescribed displacements u, on A.u » the

Yi
displacement function satisfying the equations of motion (2), the
constitutive equations (3) and the traction boundary condition on A.c

is determined by

6-ff(u-x)dv-fu& n, A} =0 (15)
MRV Agiijj J

where Uv and K.v are analogous to the elastic strain energy density

and kinetic energy density and are given by

A
U, =ty 0f + ( U, P05 Yy

2

pw u

Nll—‘

K, = uy Uy

-]

oij nj = prescribed traction on Ab

nj = direction cosines of the outward unit normal to the surface AU

6 means that the variations must be taken with respect to the dis-
u

placement function only. -

Sy 7 - » R TR SRR g a1 Y
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2 If the kinematic equations (10) are also satisfied (i.e., we define

iahns

strain functions to satisfy Eq. (10)), we can write

by .

‘ U, =G+ w 13 13

»%% This variational principle is analogous to Hamilton's principle in
; i; dynamic elasticity.

;é Comparing Eq. (15) with the variational principle given by Schapery

E% in [7] we see that here we can choose trial functions for the displace-

22 ment which need only satisfy the displacement boundary conditions of

ﬁg the problem whereas in [7] Schapery must choose displacement and stress

j? functions which must already satisfy the equations of motion. The
; ;% . latter principle thus appears more restrictive and would be more dif-
E{f% ficult to apply in complicated problems.
ig % The variational principle can be proved by carrying out variations
3 E with respect to the function u; to yield
?‘ -f{()\*u ) +(u.*u ) +(u*u ) +pu)2u}6u dav
f'%% . k,k’,1 i,3%,]3 j,1i7,] i i

+f ",r)\* Yk 61j+p'*(ui.,j+uj,i) - &ij}nj GuidA =0 (16)
§ ;% In view of the arbitrariness of Sui » this expression equals zero
? ‘ég only if the equations of motion (2), the constitutive equations (3),

Ef and the traction boundary conditions on Ac are satisfied.

If we restrict the admissible class of displacement functions such

AN
S

that the boundary conditions for both the displacements on Au and

Y

e
byl

traction on AU (through Eq. (3)) are satisfied, the surface integral

ST
ik

~ TGP T S
o3 2 ax 5 =5 > PR s . 27 N R S Vg T F T e -Hﬂ.ql
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drops out of Eq. (16) and we are left with a simplified form of the
principle

~

{ . % * * 2 .
/ O uk,k)’i-i-(p. ui,j),j+(u uj,i),j+pw uj 6ui dv = 0
V

(17)

Equation (16) {(or (17) which is a special case of (16)) can be con-
sidered to be an alternativé form of the variational principle (15).
Equation (17) can be considered to be a Galerkin formulation of the
problem,

It is useful to compare the relative advantages of the two forms.
Equation (15) uses energy invariants and therefore appears more con-
venient in complicated coordinate systems. However, when carrying out
a Rayleigh-Ritz method of solution, use of Eq. (16) can save a large
amount of calculations since the variations have already been carried
out.

It must be remembered that k* and u* are temperature dependent
and in order to get the temperature field we require another variational
principle from the energy equation. This can be stated as follows:
of all temperature distributions which satisfy prescribed T on AT ’
the temperature distribution which also satisfies the energy equation

(7) and the heat flow boundary condition on AH is determined by

6{/(ST-SM)dV+fﬁTdAJ.=O (18)
T v AH

where ST is propourtional to the entropy praduction density resulting

from temperature gradients (see [7])

,
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1

Sp =2 KTy Ty ; ;

i

and sM is the integral of the mechanical dissipation i
5
T -

Sy =2 f D 4T* .

H= prescribed heat flux per unit areca out of the body. 1 H

0 means the variations must be taken with respect to the tempera- k
T
ture only;

D is as given by Eqs. (7) and (10). )

This principle can be proved by taking variations with respect to

T to yield

-[(2D+KT,11) GTdV-!-f(KT,ini-i-fi) 5T dA =0 (19)
v u

In view of the arbitrariness of 0T , this expression is zero ]

only if the energy equation (10) and the heat flow boundary condition

EE - T

on AH is satisfied.

If we restrict the admissible class of temperature functions such

s S AR

that the boundary conditions for both the temperature on A.r and heat

PRy

flow on AH are satisfied, the surface integral drops out of Eq. (19)

Loyt

and we are left with

D Pt S8 s ey o

[ (2D + m’ii) 6T dV = 0 (20)
v
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Equation (19) is an alternative form of the variational principle (18).
Equation (18) uses thermodynamic invariants and the comments made ear-
lier about the two forms of the variational principle for the equa-
tions of motion apply here too.

The variational principles for displacement and temperature (Egs.
(15) and (18)) are entirely equivalent to the field equations (2), (3),
and (10), with their associated boundary conditions. The displacement
and temperature functions can be obtained by simultaneously making the
appropriate integrals stationary with respect to displacement and tem-
perature respectively. The first equation (15) could be regarded as
getting a stationary "cost" function, and the second (18) as a con-
straint, or vice versa.

A Rayleigh-Ritz procedure can be used to obtain the displacement
(and hence the stress components) and temperature distribution. This

is done in a one-dimensional example presented later in the report.

2. Variational Principles in Two-Dimensional Polar Coordinates for

Plane Strain

The variational principle for displacement (Eq. (15)) takes the
form: of all displacement and strain functions satisfying prescribed
displacements on Au and the kinematic Eqs. (13), the displacement
function satisfying the equations of motion (11), the constitutive

equations (12), and the traction boundary conditions on Ay are

given by

[
[

2

L% 2 .
N 2, Feel 2 w2 2
3 { 3-(6 +eg) Hu (er + et zere) ) (ur + ue)J av

T

L(nr ar + ng &re) up + (n, c‘;re + ng Gg) ug ] dAj =0 (21)

B dain i W
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where

. %h'iiﬂ‘ ‘;i‘»’ﬂ Sl

i

fork

2 e Cnghialy

oot w \ e

PO

n=n e +ny e

n being the outward normal to Ac and e. s & the unit vectors in

the radial and tanjential directions.

Equation (21) is obtained from Eq. {15) by a transformation of

coordinates using the fact that ekk and eij eij are invariants.

P T LR T T

The alternative form of Eq. (21), for the case (for simplicity)

where the normal n = e, (i.e. for a circular boundary) is obtained

A S, Bk,

by taking variations with respect to u. and ug

*
IR % 23 % 2
- [ Ligph (e  +6g) + 20 €) + 2 =5(u €r0) +—%-(€r - €g)
\'4

L st

duiisiee AU

2 13 % %* d , *
+pw urf bu, + 3255 (M (e, +6g) + T 6g) + 2==(b € q)

*
Gu e 5
r6 2 * * ° } ;
+ — +Pw ue} éue} dav + /' [IX (e, + €g) + 2u €. - 0O, 6ut 3.
A ;
P o g | - ‘
+12 € -8 o7 buy dA = 0 (22) ;

where 8r and ére are the prescribed traction components on AG .

This expression is seen to vanish when the Eqs. (11), (12), and

the traction boundary conditions cn AC are satisfied.

If the normal points inwards (i.e. n = -gr) the sign of the sur-

face integral changes.

Once again, if the trial functions for displacement components are
chosen such that the traction boundary conditions are satisfied on Ab
the surface integral vanishes and we have a simpler form of the varia-

tional principle.
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" WE;%W

The variational principle for the energy equation (18) becomes

[ 4 <:>2}-sz1av+[um}=o

,,‘.n
& £
X e gl de 0 NI T o1

ader BTy

s,

where D is given explicitly in Eq. (14).

3
2y E e e

Its alternative form, obtained as usual by taking variations with E

respect to the temperature, for the case n = e, is 5

-/' (V% T + 2D) 6Tdv+f (ﬁ+x-§-§) 6T dA = 0 (2%)
v Ay

where V2 is as given in Eq. (14).

Once again, as expected, this expression vanishes when the energy E
equation (14) and the heat flow boundary condition on AH is satis-

fied.

AN EXAMPLE IN ONE DIMENSION

o ok

1. The Problem

Y

The problem of steady state longitudinal waves in a vigcoelastic

rod with thermomechanical coupling is now solved using the one dimen- ;
sional versions of the variational principles presented in the previous %
section. A Rayleigh-Ritz procedure is used on the alternative forms 1
of the variational principles. The same problem, including time
dependence, was solved by Huang and Lee [9] using a finite difference
approach. The results obtained here are compared with some steady
state results given in [9]. The question of how convergence to the

solution given in [9] depends on the number of coordinate functions used

is discussed.
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Let us consider a viscoelastic rod of length £ insulated on its
lateral surface as shown in Fig, 1. The left end is free while the
right end is vibrated at a frequency ® with a constant stress ampli-
tude % (real), so that the prescribed stress at this end is
Oy cos wt . The temperature of the vibrator is assumed constant at
T, while a radiation boundary ccndition is assumed at x =0 .

0
The boundary conditions can therefore be written as

0
(25)

T= TO

where c¢ = h/K is the ratio of the surface conductance h to the
thermal conductivity K of the viscoelastic material. Note that the
problems of uniform normal or shear traction on the surface of a wide
slab with the stated thermal boundary conditions prescribed on the slab
surface are mathematically equivalent problems. Note also that here
we have mixed thermal boundary conditions but this can be taken care

of in the variational principle as shown later.

2. The Field Equations and Variational Principles

The equations of motion (2) and the constitutive equations (3)

reduce to
d ,.* du 2
WE ) rewu=0 (26)
* d
ca0‘1+102=E-a-}u-E 27)

R RIS S K R S Ay
3,
b

H

I

S NI

e ass oy

et fa ¢ A

Laias

hun seotom 40 K e IS whintl ST D,




~18-

%*
wvhere E = E1 + 1 E

2 is the complex Young's modulus which is a func-
tion of the temperature through the reduced €requency (see Ea. (5)).

The steady state energy equation becomes

2 2
dT , w du -
K -3 + 3 EZLT;J = 0 (28)

P 2
where, as before, E—z = — =

%
Note that for the one-dimensional strain problem, E must be re-

% *
placed by A + 20 and E, by A, + 2u, .

2 2
The corresponding variational principle for displucement becomes:

of all possible displacement functions, the one satisfying the equa-

tion nf motion (26), the constitutive equation (27) and the stress

boundary conditions from Eq. (25) is determined from

*, 7 2 2 -
f E [du p w” u) L
8 f w2 '&.\ e dx + i) “(E)J =0 (29)

U

If the admissible class of displacement functions is restricted
such that the stress boundary conditions are already satisfied (through
Eq. (27)), the alternative form of the variational principle takes the

simplified form

L
f{\%}-‘\E*%)-fpwzujﬁudx-C (30)
0

The temperature variational principle takes the form: of all tem-

perature distributions which satisfy T(L) = Ty » the temperature dis-

tribution which also satisfies the energy equation (28) and the
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radiation boundary condition at x = 0 (see Eq. (25)) is determined

from
2 T
. 2 wE (1) 2 \
1 /dT 2 du
gffk-ix(a\, -f—-—-'—z lﬁ dT'}dx
0
/T2 S
+ hiz - TTO>_ j=0 (31)

x=0

Taking variations and integrating by parts, the alternative form is

obtained as

g
f (x dz L—\ 8T dx + {(h('l‘ - T)- K %) a'rj
0 dx

(32)
which is true only if Eq. (28) and the radiation boundary condition at

x =0 is satisfied.

As before, if the temperature is chosen such that both the tempera-
ture and radiation boundary conditions (at x = £ and at x = 0) are

already satisfied, the temperature must be determined from
. E
f —

0

Equations (30) and (33) are used in further calculations in this

) 6Tdx = 0 (33)

section, The object is to find the spatial distribution of temperature,

displacement and then stress.

.
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3. 7The Properties of the Material
A Lockheed solid propellant is an example of a thermorheologically

simple materisl in which, within a wide reduced frequency range, the

*
complex shear compliance J = J1 -1 J2 can be represented by (see

E2))

J1 = kl(w aT)

J2 = kz(w aT)

k n, T
2 -1)
-~ = tan

k1 2

n Tnz "
(aT)2=T-T

1

and k1 , k2 » My 5 Ny T1 and '1’n2 are constants. The tensile

* * *
compliance D = 1/E 1is related to the shear compliance J and the

*
bulk compliance B by the equation

« 35 g
D ='§—+-9-—

* *
and whenever J 1is greater than B by at least two orders c. magni-

tude, we can write

oy e 4 33 2z ey Yo LA . . " X
vl i ¥ 5 3
g P

™ Ny e bk ey B ) FEE P ok

Sl

D, =c, P - 1,)" (34)

v
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where c, , cy s B , ¥ are constants. i
E, and E, are now obtained from above as f
¢ i
E ! %
1572 2 p
D1 + D2 p
(35)
B -2
2 2 2 3
Dl + D2 ‘
4. Method of Solution 3
The Rayleigh-Ritz procedure [11] is now used to obtain approximate y

solutions for the temperature and displacement (and then stress) func-
tions from the variational equations (30) and (33).

The following dimensionless quantities are used

P W W T, o AR

" T-T
q='2: T = g—, A=c £ (36)

P S

-t

pot
A

Equations (30) amd (33) are nonlinear and it is not possible to

choose an orthogonal set of coordinate functions for the displacement

PR R A R

and temperature. For convenience, it is assumed that the displacement

I

=

and temperature distributions can be approximated by a linear combina-

tion of polynomials with coefficients to be determined. Thece func-

tions are chosen such that they satisfy the boundary conditions (Eq.
(25)) for all choices of these unknown coefficients. Also, the number

of terms in the series are parameters which can be set in the rasult-

. ‘&ﬁ,«,i‘» " ““3]!55 v,mm&»‘lﬁ&'...;iM 2

aidad

ing algebraic equations for the coefficients. This enables comparison
of successive approximations with the solution in [9] and thus an esti-

mate of the degree of accuracy as a function of the number of terms

taken is obtained.

JE—— -
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The non-dimensional ‘ mperature is written as

m

2 i-2
r(@) =1+ (- {by+e bga+a® ) bA- 0T (37)
i=2

where e = W41, m is a parameter and b0 s b2 s b3 ... b are

m real constants that are to be determined ( m < 2 implies

s e A R S B

m
N o=o0).
fu2
It is easily seen that
a7 - _ -
55| = boley - D) = bg =T - Do
q=0
and

=Y
[
[

q=1

Sreated RS NV N e AN R TR S S SR

which means that the thermal boundary conditions from Eq. (25) are
satisfied in terms of the non-dimensional variables defined in Eq. (36).

The complex strain is written as

n
= du -t
e'el"’iez"dx"QL 81(1 Q) (38)
i=0
where
, = R I_ * _ 8 Y .
¢ = 89 +ia;=D - 59 = (cy - & c2) w (T, - Tl) <,

n is a parameter and a; » 8y , 83 «.. a, are n complex constants

that are to be determined.




R As before, it is obvious that with this choice of strain

*
(o] =0 [o] = § a. =0
‘qso ’ ‘qal ‘qsl 0 0

so that the stress boundary conditions from Eq. (25) are satisfied.

writing &, ~© a§‘+ i ai (k = 1,n) this choice of functions leads
to (2n + m) real unknowns which must be determined from an equal num-
ber of algebraic equatioms.

These nonlinear algebraic equations are now determined from the
variational equations (30) and (33). Substituting the displacement
and temperature expressions into Eq. (30), carrying out the necessary

R

integrations and 2quating the coefficients of 8 2y (3 =1m) to

zero gives

for j = 1,2,3,...n

n
(3+1)(33'2)(j+3) + L aﬁ al£(3,k) - £(3,k+1) ]
k=0
n (af ok + 1 a1y
k% T % %0
"L | 2 (g = Do © Leg2) (39)
k=0 2l
and equating the coefficients of 6 a§ (3 = 1,n) to zero gives
for j = 1’2!3,00.!1
n
L ai A[£(3,k) = £(3,ktD)]
k=0
n (ai & . & ak)
i Dkt (40)
l .a ’2 Ty - 20441 + Ik+j+2) 0
k=0 0!

b 3 ki

4 S vl
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vwhere Ip ( p an integer) 1is a nonlinear function of ey » b0 )

b b

R S AR N i R
L

22 Py s cees bm defined as

1
: 1=f 1 - q)P dq
; P 5

{ A
0 {1 + (1 - q)Lbo + ey bo q + q2 ZJ bi(l - q)i'z]}
i=2

: f(j,k) 1is a function of integers

S ks
AL R AR At 24 ‘d‘ﬁd%w.% oSt XS S E"kf 2 Ao ool ,;,:.n gt 2 25

3 £03.K) = K(kti46) + (kt2) (§+3)
Js (3+2) (3+3) (ictL) (ic+2) (b J+3) (ck J48)

d 1is a non-dimensional parameter

the strain. Integration of Eq. (38) leads to an extra constant, say

o) w2 zz
. d U

0 ]
%' and ;
2 R2, 1,2
|2o]© = (@)™ * (ap) :
é Note that Eq. (30) requires the displacement u in addition to |
3

g » but also an extra equation obtained by equating the coefficient

of & o to zero. Thic extra constant ¢, has been eliminated from

0
Eqs. (39) and¢ (40) given above. 3
Next, substituting the displacement and temperature expressions into ?
Eq. (33) and equating the coefficient of 6 bo to zero gives %
b
(3+e) e b, 2 n ?
0 R _R I.1 3
3 =) BByt Byt By +V 2 Leay 3 + 2 3 é
k=2 i,k=0 f;
X3

{(1"‘1) Loy ~(2 4 32)) Tyt (L4 3e)) La- e Ii-!-k-l-fJJ =0 (41)

.
Qb ¥ e N e e el Ay o s iR E 2 v o8 e ‘*-U
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1
3 and equating the coefficients of & bj (1 = 2,m) to zero
Ii" -
i gives
1 4] for j=2,3,4...m
4 5 4e1 bO m
3 By ——— e, o, b - -
u TGO GR) ~ ), Pk[BULE-1) = 20¢1,k) + h(1,t1)]
. n
Ok R R, I I { .
- FV) (e a4 % %) Wipprcer = Lppppe * 8T 4 ytier1
! i,k=0
n ~
' T Mirsnctr F Liggaaa) 0 (42)
4
3 é ) where 8 and h(j,k) are given by
E B (k+1+e1)(k-1)
k- 8 © (1)
.k . 2k (k-1)
. ¥ Q) = G et D) D)
i V is the non-dimensional parameter
- 2 -y-1 1-B
B R R U
‘: g V = 2 2)
2&K(cy + ¢
b :ﬁ ( ' 2
and Ip has been defined before in Eq. (40).
Equations (39), (40), (41), and (42) constitute a set of (2n4m)
§ nonlinear algebraic equations for the (2n+m) unknowns aﬁ (k = 1,n) ,
k & (k=1l,u), by and b (k = 2,m) . '
The integral Ip given in Eq. (40) can be approximately evaluated
: by expanding the denominator in a binomial series retaining only linear
| terms and carrying out the integration.
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For example, for m= 5 , we get

6
w, K! p!
- v -¥-1 E,"E"“"‘
I, = v({l + 1) i)
k=0
where
W = -(el - 1) bo
wy = =(b, + by + b, + by - e bp)
Wy = (b, + 2by + 3b, + 4b)
W, = -(b3 + 3b4 + 6b5)
wg = (b, + b)
We = -bs

The values of Ip for other values of m can be easily calculated,
This approximation for Ip proved sufficiently accurate for the
calculations carried out. Ip can, of course, be more accurately deter-

mined by numerical integration for each trial value of b b

0 Py ee
bm during iterative solving of the nonlinear algebraic equations (39),

(40), (41), and (42).

The stresses are determined from the strains and temperature from

oy =E; & -Ey ¢

(43)

and the stress 2t any time

oty _

Re(5(x,t)) = Re(C e L €08 wt - 0, sin ot (44)

These equations follow immediately from Eq. (27). E, and E2 are
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determined as functions of temperature from Eqs. (34) and (35). ‘f»;:
Non-dimensional stresses 5y and s, are defined as g j
S
81‘)‘01’52")‘62 3
and at x = {4 3 :
50 =% i
i
where
:
X = [ wo(Ty - 7)1 (45) '
i
5. Results and Conclusions :
Numerical calculations have been carried out for the following data :
for a Lockheed solid propellant [9] whose mechanical and thermal proper- ;
ties are qualitatively typical of many viscoelastic solids 3
¢y = 4.61 x 10.11 (psi.)"1 (sec)B ("F).'Y 2
¢, = 1.62 x 107 (psi)™! (sec)® ("R
B=-0.214 Yy = 3.21 ;
xe1.07 T, = 65°F
T, = - 125°F 4 =3 in. ;
sz =1.023 x 10.4 psi-sec2 §
2Kp(T0 - Tl) = 8§.08 x 10'4 psiz-sec ;
4
o = 10° rad/sec. s, = 0.5 (o, = 1.42 psi) %
2
ri:n [9] % should read 1.0 instead of 0.1. ‘%
K
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The nonlinear algebraic equations (39), (40), (41), and (42) were
solved numerically in a computer for different values of n and m .
The subroutine used is given in [14]. The method is a compromise be-
tween the Newton-Raphson algorithm and fhe method of steepest descent.

Figures 2, 3 and 4 show the resulting 7T , 8y and Sy distribu--
tions for different values of n and m and also the solution from
[9] obtained by the method of finite differences. The solution for
n=1, m:=0 is crude but we see that the convergence to the true
solution is very rapid. Figures 5, 6, and 7 show the approximate solu-
tions for n =4, m= 3 . Even with these relatively small number of
terms, the stress solutions are practically identical to those given in
[9], while the temperature solution is well within engineering accuracy.
The algorithm for solving the nonlinear algebraic equations converges
very quickly and more accurate solutions can be obtained, if desired,
by taking larger values of n and m.

As mentioned earlier, if the steady state values of stress and
temperature are of interest (this is often the case in design), the method
used here, which yields the steady state directly, is superior to that
used by Huang and Lee in [9] where the complete time historiles of the
above mentioned quantities were determined. In some cases in {9] the
authors obtained the steady state solutions by numerically integrating
forward in time till the variables of interest did not change significant-
ly. In other cases, they did not integrate upto the steady state but
stopped at some large value of time.

The results obtained are thus very satisfactory as long as 8y and
s, are sufficiently smooth functions so that approximation by a series

nf polynomials is efficient. The nature of the spatial distribution of
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stress depends upon the particular choice of frequency and driving
stress. For a given driving frequency, larger driving stresses lead
to larger temperatures since more mechanical energy is dissipated as
heat. This causes the material to become softer, so that lower stress
wave velocities and therefore lower wave lengths result. If S1 and
s, are rapidly oscillating functions of q , the polynomial series is
no longer efficient since a larger number of terms must be taken to get
the required accuracy and the lack of orthogonality of the polynomials
gives rise to Hilbert matrices. This results in convergence problems
for the algorithm used to solve the algebraic equations. The varia-
tional principles, however, should work fine for these cases, if, for
example, trigonometric functions are chosen instead.

To sum up, the variational approach seems comparable to the finite
difference approach for waves in one dimension and ought to be more
efficient in two or three dimensions where the differential equa-
tions are partial and finite difference simulation becomes much more
complicated. Solving for displacements instead of stresses has the
advantage of automatic satisfaction of compatibility conditions and
Mitchell's equations for multiply connected regions. The choice of

coordinate functions is very impcrtant and must he made carefully,
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Figure 1. Boundary conditions for the one-dimensional problem.
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